Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. ASI Community
  3. ASI Multidisciplinary Collection
  4. Investigating the origin of magnetic perturbations associated with the FIP Effect
 
  • Details

Investigating the origin of magnetic perturbations associated with the FIP Effect

Author(s)
Murabito, M.
Stangalini, Marco  
Baker, D.
Valori, G.
Jess, D.B.
more
Date Issued
2021
Publisher
EDP Sciences
Abstract
Recently, magnetic oscillations were detected in the chromosphere of a large sunspot and found to be linked to the coronal locations where a first ionization potential (FIP) effect was observed. In an attempt to shed light on the possible excitation mechanisms of these localized waves, we further investigate the same data by focusing on the relation between the spatial distribution of the magnetic wave power and the overall field geometry and plasma parameters obtained from multi-height spectropolarimetric non-local thermodynamic equilibrium (NLTE) inversions of IBIS data. We find, in correspondence with the locations where the magnetic wave energy is observed at chromospheric heights, that the magnetic fields have smaller scale heights, meaning faster expansions of the field lines, which ultimately results in stronger vertical density stratification and wave steepening. In addition, the acoustic spectrum of the oscillations at the locations where magnetic perturbations are observed is broader than that observed at other locations, which suggests an additional forcing driver to the p-modes. Analysis of the photospheric oscillations in the sunspot surroundings also reveals a broader spectrum between the two opposite polarities of the active region (the leading spot and the trailing opposite polarity plage), and on the same side where magnetic perturbations are observed in the umbra. We suggest that strong photospheric perturbations between the two polarities are responsible for this broader spectrum of oscillations, with respect to the p-mode spectrum, resulting in locally excited acoustic waves that, after crossing the equipartition layer, located close to the umbra-penumbra boundary at photopheric heights, are converted into magnetic waves and steepen due to the strong density gradient. © ESO 2021.
URI
https://hdl.handle.net/20.500.13025/6354
ISSN
00046361 (ISSN)
Journal
Astronomy and Astrophysics
Volume
656
DOI
10.1051/0004-6361/202141504
URL
https://www.aanda.org/articles/aa/full_html/2021/12/aa41504-21/aa41504-21.html
Explore by
  • Communities & Collections
  • Research Outputs

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback