Repository logo
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • People
  • Projects & Fundings
  • Missions
  • Statistics
  • English
  • Italiano
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Multi-Linear Silicon Drift Detectors for 2D X-ray spectroscopic imaging and Compton scattering
    (2009-10-01)
    ASI Sponsor
    ;
    Castoldi, A.
    ;
    Guazzoni, C.
    ;
    Hartmann, R.
    Multi-Linear Silicon Drift Detectors (ML-SDDs) are a recent evolution of silicon drift detectors, in which the signal electrons generated by the interaction are confined within parallel drifting columns and transported towards point-like anodes by the electrostatic field. ML-SDDs can be operated both in integrate-readout and in free-running mode and are able to provide 2-D position sensing capability combined with spectroscopic energy-resolution. Therefore ML-SDDs open the way to time-resolved imaging and spectroscopy of X-rays and Compton electrons in addition to charged particle tracking. The excellent energy resolution and the relatively small Doppler broadening of silicon makes a ML-SDD detector an ideal candidate to reconstruct the original location of the gamma-ray with sub-millimeter position resolution. Novel designs of 1 cm2 and 3 cm2 ML-SDDs have been carried out and first detectors prototypes were produced at the Halbleiterlabor of the Max Planck Institut in cooperation with PNSensor GmbH. In this paper we will discuss the main detector performance in terms of position, energy and time resolution.
    Type:conference paper
    Scopus© Citations 2
Explore by
  • Communities & Collections
  • Research Outputs

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback